APPENDIX II Waveform Template

Waveform Template

This appendix contains the Waveform Template that describes the contents of the Waveform Descriptor that
is produced by the commands WE? DESC and WE? ALL. After the template are explanations of the
construction of floating point numbers from bytes in the descriptor, followed by program fragments that show
a method of performing the calculations.

Waveform Template

This template is the oscilloscope’s response to a TMPL? query:

/00
000000 LECROY 2 3: TEMPLATE
8 66 111

Explanation of the formats of waveforms and their descriptors on the
LeCroy Digital Oscilloscopes,
Software Release 8.1.0, 98/09/29.

A descriptor and/or a waveform consists of one or several logical data blocks
whose formats are explained below.
Usually, complete waveforms are read: at the minimum they consist of
the basic descriptor block WAVEDESC
a data array block.
Some more complex waveforms, e.g. Extrema data or the results of a Fourier
transform, may contain several data array blocks.
When there are more blocks, they are in the following sequence:
the basic descriptor block WAVEDESC
the history text descriptor block USERTEXT (may or may not be present)
the time array block (for RIS and sequence acquisitions only)
data array block
auxiliary or second data array block

WM-RCM-E Rev D ISSUED: February 2005 279

APPENDIX II: Waveform Template

; In the following explanation, every element of a block is described by a

; single line in the form

where

<variable type> = string

byte
word
long
float
with the format shown below

double

enum

280

<byte positions <variable name>: <variable type> ; <comments>

<byte position> = position in bytes (decimal offset) of the variable,
relative to the beginning of the block.

<variable name> = name of the variable.

up to l6-character name
terminated with a null byte
08-bit signed data value

16-bit signed data value

32-bit signed data value

32-bit IEEE floating point value

31 30 .. 23 22 ... 0 bit position
s exponent fraction
where

s = sign of the fraction
exponent = 8 bit exponent e
fraction = 23 bit fraction f

and the final value is

(-1)**g * 2%x(e-127) * 1.f
64-bit IEEE floating point wvalue
with the format shown below

63 62 .. 52 51 ... 0 bit position
s exponent fraction
where

s = sign of the fraction

exponent = 11 bit exponent e

fraction = 52 bit fraction f

and the final value is

(-1)**g * 2%%x(e-1023) * 1.f

enumerated value in the range 0 to N
represented as a 16-bit data value.

The list of values follows immediately.
The integer is preceded by an _

ISSUED: February 2005 WM-RCM-E Rev D

time stamp double precision floating
for the number of seconds

for minutes, hours,

double seconds

byte minutes
byte hours
byte days
byte months
word year
word unused

days,

to
to
to
to
to
to

Waveform Template

point number,
and some bytes
months and year.

16000)

data byte, word or float, depending on the
read-out mode reflected by the WAVEDESC
variable COMM TYPE, modifiable via the
remote command COMM_ FORMAT.

text arbitrary length text string

(maximum 160)

unit_definition a unit definition consists of a 48 character
ASCII string terminated with a null byte

i
i
i
i
i
i
i
i
i
i
i
; There are 16 bytes in a time field.
I
I
I
I
I
I
I
I
; for the unit name.
I

WAVEDESC: BLOCK

; Explanation of the wave descriptor block WAVEDESC;

COA S~

< 16> TEMPLATE NAME: string

A

32> COMM_TYPE: enum
0 byte
1 word
endenum

< 34> COMM_ORDER: enum
_0 HIFIRST

1 LOFIRST
endenum

WM-RCM-E Rev D ISSUED: February 2005

0> DESCRIPTOR NAME: string ; the first 8 chars are always WAVEDESC

; chosen by remote command COMM_FORMAT

281

APPENDIX II: Waveform Template

The following variables of this basic wave descriptor block specify
the block lengths of all blocks of which the entire waveform (as it is
currently being read) is composed. If a block length is zero, this
block is (currently) not present.

Blocks and arrays that are present will be found in the same order
as their descriptions below.

; BLOCKS

< 36> WAVE_DESCRIPTOR: long ; length in bytes of block WAVEDESC

< 40> USER_TEXT: long ; length in bytes of block USERTEXT

< 44> RES DESC1l: long ;

;ARRAYS

< 48> TRIGTIME ARRAY: long ; length in bytes of TRIGTIME array

< 52> RIS _TIME ARRAY: long ; length in bytes of RIS TIME array

< 56> RES_ARRAY1: long ; an expansion entry is reserved

< 60> WAVE _ARRAY 1: long ; length in bytes of 1st simple
; data array. In transmitted waveform,
; represent the number of transmitted
; bytes in accordance with the NP
; parameter of the WFSU remote command
; and the used format (see COMM TYPE) .

< 64> WAVE_ARRAY 2: long ; length in bytes of 2nd simple
; data array

< 68> RES_ARRAY2: long

< 72> RES_ARRAY3: long ; 2 expansion entries are reserved

The following variables identify the instrument

A ~e o~ o~

76> INSTRUMENT NAME: string
i 92> INSTRUMENT NUMBER: long
i 96> TRACE LABEL: string ; ldentifies the waveform.
ill2> RESERVED1: word
<114> RESERVED2: word ; 2 expansion entries

282 ISSUED: February 2005 WM-RCM-E Rev D

Waveform Template

; The following variables describe the waveform and the time at
; which the waveform was generated.
<1l16> WAVE_ARRAY COUNT: long number of data points in the data
array. If there are two data

arrays (FFT or Extrema), this number
applies to each array separately.

<120> PNTS_PER_SCREEN: long ; nominal number of data points
; on the screen

<124> FIRST VALID_ PNT: long count of number of points to skip

before first good point

FIRST VALID POINT = O

for normal waveforms.

<128> LAST VALID PNT: long index of last good data point

in record before padding (blanking)
was started.

LAST VALID_ POINT = WAVE ARRAY COUNT-1
except for aborted sequence

and rollmode acquisitions

I

<132> FIRST POINT: long for input and output, indicates

the offset relative to the

beginning of the trace buffer.

Value is the same as the FP parameter

of the WFSU remote command.

<136> SPARSING_FACTOR: long for input and output, indicates

the sparsing into the transmitted
data block.

Value is the same as the SP parameter

of the WFSU remote command.

<140> SEGMENT_ INDEX: long for input and output, indicates the
index of the transmitted segment.
Value is the same as the SN parameter

of the WFSU remote command.

i
<144> SUBARRAY COUNT: long ; for Sequence, acquired segment count,
; between 0 and NOM SUBARRAY COUNT

i
<148> SWEEPS_PER_ACQ: long ; for Average or Extrema,

; number of sweeps accumulated
; else 1

WM-RCM-E Rev D ISSUED: February 2005 283

APPENDIX II: Waveform Template

<152>
always

and

<154>

i
<156>

<160>
<1l64>
<168>

i
<172>

<174>
<176>

<180>

i
<188>
i
<196>
i
<244>
i
<292>
i
<296>

<312>

<316>

284

POINTS PER PAIR: word ;

PAIR _OFFSET: word

VERTICAL GAIN: float

VERTICAL OFFSET: float H

MAX VALUE: float i

MIN VALUE: float i

NOMINAL BITS: word H

NOM_SUBARRAY_ COUNT: word ;

HORIZ_INTERVAL: float H

HORIZ_OFFSET: double H

PIXEL OFFSET: double H

VERTUNIT: unit definition ;
HORUNIT: unit definition ;

HORIZ_ UNCERTAINTY: float ;

TRIGGER_TIME: time_stamp ;

ACQ DURATION: float H

RECORD_TYPE: enum

for Peak Detect waveforms (which
include data points in DATA ARRAY 1

min/max pairs in DATA ARRAY 2).
Value is the number of data points for
each min/max pair.

for Peak Detect waveforms only

Value is the number of data points by
which the first min/max pair in
DATA_ARRAY 2 is offset relative to the
first data value in DATA ARRAY 1.

to get floating values from raw data :
VERTICAL GAIN * data - VERTICAL OFFSET

maximum allowed value. It corresponds
to the upper edge of the grid.

minimum allowed value. It corresponds
to the lower edge of the grid.

a measure of the intrinsic precision
of the observation: ADC data is 8 bit
averaged data is 10-12 bit, etc.

for Sequence, nominal segment count
else 1

sampling interval for time domain
waveforms

trigger offset for the first sweep of
the trigger, seconds between the
trigger and the first data point

needed to know how to display the
waveform

units of the vertical axis
units of the horizontal axis

uncertainty from one acquisition to the
next, of the horizontal offset in seconds

time of the trigger
duration of the acquisition (in sec)

in multi-trigger waveforms.
(e.g. sequence, RIS, or averaging)

ISSUED: February 2005 WM-RCM-E Rev D

<318>

<320>

i
<322>

; The following variables describe the basic acquisition
; conditions used when the waveform was acquired

WM-RCM-E Rev D

LWOJOUTd WNREO

endenum

single sweep
interleaved
histogram

graph

filter coefficient
complex

extrema
sequence_obsolete
centered RIS
peak_detect

PROCESSING DONE: enum

o

endenun

no processing
fir filter
interpolated
sparsed
autoscaled
no_result
rolling
cumulative

RESERVEDS5: word i

RIS SWEEPS: word

I

ISSUED: February 2005

expansion entry

Waveform Template

the number of sweeps

285

APPENDIX II:

Waveform Template

<324> TIMEBASE: enum
0 1 ps/div
1 2 _ps/div
2 5 ps/div
3 10_ps/div
_4 20_ps/div
5 50_ps/div
6 100_ps/div
7 200_ps/div
8 500_ps/div
9 1 ns/div
_10 2 ns/div
11 5 ns/div
~12 10 ns/div
13 20 ns/div
14 50 ns/div
_15 100 _ns/div
_1l6 200_ns/div
_17 500_ns/div
_18 1_us/div
_19 2_us/div
20 5 us/div
_21 10_us/div
_22 20_us/div
23 50 us/div
24 100_us/div
25 200 _us/div
26 500 us/div
27 1 ms/div
28 2_ms/div
29 5 _ms/div
_30 10_ms/div
31 20_ms/div
32 50_ms/div
33 100 _ms/div
34 200_ms/div
_35 500 _ms/div
_36 1 s/div
37 2 s/div
38 5 s/div
39 10 _s/div
40 20 _s/div
41 50 _s/div
_42 100_s/div
_43 200_s/div
44 500 _s/div
_45 1_ks/div
_46 2_ks/div
_47 5_ks/div
_ 100 EXTERNAL
endenum

<326> VERT COUPLING: enum
0 DC_50 Ohms
1 ground

2 DC_1MOhm

286

ISSUED: February 2005

WM-RCM-E Rev D

<328>

<332>

WM-RCM-E Rev D

3 ground
"4 AC, 1MOhm
endenum
PROBE_ATT: float
FIXED VERT GAIN: enum
0 1 uv/div
~1 2 uv/div
2 5 uv/div
3 10_uv/div
4 20_uv/div
5 50 uv/div
6 100 _uv/div
7 200 uv/div
8 500 uv/div
9 1 mv/div
710 2 mv/div
_11 5 _mv/div
_12 10_mv/div
_13 20_mv/div
_14 50_mv/div
_15 100_mv/div
_16 200_mv/div
T17 500 _mv/div
T18 1 _V/div
T19 2 v/div
20 5 Vv/div
21 10 Vv/div
22 20 _V/div
T23 50_V/div
24 100 v/div
25 200 Vv/div
26 500 Vv/div
27 1 _kV/div
endenum

ISSUED: February 2005

Waveform Template

287

APPENDIX II: Waveform Template

<334> BANDWIDTH LIMIT: enum
0 off

1 on
endenum

<336> VERTICAL VERNIER: float
<340> ACQ VERT OFFSET: float

<344> WAVE_SOURCE: enum
0 CHANNEL_1
1 CHANNEL 2
2 CHANNEL 3
3 CHANNEL 4
9 UNKNOWN
endenum

/00 ENDBLOCK

Explanation of the descriptor block USERTEXT at most 160 bytes long.

0> TEXT: text ; a list of ASCII characters

/00 ENDBLOCK

TRIGTIME: ARRAY

; Explanation of the trigger time array TRIGTIME.

; This optional time array is only present with SEQNCE waveforms.

; The following data block is repeated for each segment which makes up
; the acquired sequence record.
i
<

0> TRIGGER TIME: double ; for sequence acquisitions,
; time in seconds from first
; trigger to this one

< 8> TRIGGER_OFFSET: double ; the trigger offset is in seconds
; from trigger to zeroth data point

/00 ENDARRAY
RISTIME: ARRAY
Explanation of the random-interleaved-sampling (RIS) time array RISTIME.

This optional time array is only present with RIS waveforms.
This data block is repeated for each sweep which makes up the RIS record

28 8 ISSUED: February 2005 WM-RCM-E Rev D

Waveform Template

< 0> RIS OFFSET: double ; seconds from trigger to zeroth
; point of segment

/00 ENDARRAY

DATA ARRAY 1: ARRAY

; Explanation of the data array DATA ARRAY 1.

; This main data array is always present. It is the only data array for
; most waveforms.

; The data item is repeated for each acquired or computed data point

; of the first data array of any waveform.

i

<

0> MEASUREMENT: data ; the actual format of a data is
; given in the WAVEDESC descriptor
; by the COMM_TYPE variable.
/00 ENDARRAY

DATA ARRAY 2: ARRAY

Explanation of the data array DATA ARRAY 2.
This is an optional secondary data array for special types of waveforms:

Complex FFT imaginary part (real part in DATA ARRAY 1)
Extrema floor trace (roof trace in DATA ARRAY 1)
Peak Detect min/max pairs (data values in DATA ARRAY 1)

In the first 2 cases, there is exactly one data item in DATA ARRAY 2 for
each data item in DATA ARRAY 1.

In Peak Detect waveforms, there may be fewer data values in DATA ARRAY 2,
as described by the variable POINTS_PER_PAIR.

A Se e ome me oS Se e S0 S S~

0> MEASUREMENT : data ; the actual format of a data is
; given in the WAVEDESC descriptor
; by the COMM_TYPE variable.

/00 ENDARRAY
SIMPLE: ARRAY
Explanation of the data array SIMPLE.

This data array is identical to DATA ARRAY 1. SIMPLE is an accepted
alias name for DATA ARRAY 1.

A S e ~e o~ o=

0> MEASUREMENT: data ; the actual format of a data is
; given in the WAVEDESC descriptor
; by the COMM TYPE variable.

/00 ENDARRAY

WM-RCM-E Rev D ISSUED: February 2005 289

APPENDIX II: Waveform Template

DUAL: ARRAY

Explanation of the DUAL array.

This data array is identical to DATA ARRAY 1, followed by DATA ARRAY 2.
DUAL is an accepted alias name for the combined arrays DATA ARRAY 1 and
DATA_ARRAY 2 (e.g. real and imaginary parts of an FFT).

VA e s e s e

0> MEASUREMENT 1: data ; data in DATA ARRAY 1.
; 0> MEASUREMENT 2: data ; data in DATA ARRAY 2.
}00 ENDARRAY
;
00 ENDTEMPLATE

2 90 ISSUED: February 2005 WM-RCM-E Rev D

Waveform Template

DECODING FLOATING POINT NUMBERS

Single precision values are held in four bytes. If these are arranged in decreasing order of value we get the
following bits:

bit 31, bit 30, bit 29, bit 28 bit 3, bit 2, bit 1, bit 0

We must remember that if the byte order command CORD has been set for low byte first, the bytes as
received in a waveform descriptor will be received in the reverse order. But within a byte, the bits keep their
order, highest at the left as expected.

From these bits we are to construct three numbers that are to be multiplied together: S x E x . These in turn
are constructed as follows:

S=(1) E =261 F=1+f

and it is s, e, and f that are calculated directly from the 32 bits. The diagram below illustrates the calculation of
the vertical gain example of Chapter 4.

34 83 12 6F

1
FES5 43210 FEH 43210 FE S 43210 FE S 43210
0011010010000 01100010010011 01111

00110100 oooaoo11 0oo1o01a0 01101111

30232827 26252423 2221 2019318171615 14131211108 8 7 6 5 4 3 21 0
0 01101001 ooo0ooot1t1o001001T001T101111

31 30232827 26252423 2221 201318171615 14131211108 8 7 65 4 3 2 1 0

0 105 -127 2.40000486373901E-02 +1.0
1 272 1.02400004863739
2.44140636596057E-07 Final decoded result

WM-RCM-E Rev D ISSUED: February 2005 291

APPENDIX II: Waveform Template

In a way that does not follow the byte boundaries, the bits are to be segregated as follows:

31 30,29....24,23 22,21....2,1,0
sign exponent bits fractional bits
bit 0.5,0.25,0.125 . ..

The sign bit s is 1 for a negative number and 0 for a positive number, so it is easy to construct the sign from
this:

S=(-1)"s
The 8 exponent bits have the following values:

bit 23 is worth 1, bit 24 is worth 2. .. bit 29 = 64, bit 30 = 128, so the resulting number can range
from O to 28 - 1, which is 255.

127 is then subtracted from this value e creating a range from -127 to +128. This is then used as an exponent
to raise two to a power that is 2%, to create a value E.

Then we have to create the multiplying number. The values of the 23 bits are as follows:

Bit 22 is worth 0.5, 21 is worth 0.25, 20 is worth 0.125, 19 is worth 0.0625
When all the bits are added together, we obtain a positive number f that can be very close to one, differing
from it only by the value of the smallest bit, if all the bits are ones. (Generally the value will be much less than
one.) Then we add one to the result, obtaining 1 + f = F. The use of the added one extends the dynamic range
of the data.
Another way of calculating f is to take the 23-bit number at face value, and divide it by 2°24.
Finally we multiply together the sign, the value E, and the value F to create the final result:

Result = (-1)"s x 2%(e-127)x 1 + f) =SxExF
Example

In Chapter 4, one of the examples, Vertical Gain, states that the floating point number 34 83 12 GF leads to the
decimal value 2.44141E-07. Let’s see how this is done.

The bytes 34 83 12 and GF can be written in binary as follows:
0011 0100 1000 0011 0001 0010 0110 1111.

This string of bits is to be split up as follows:

2 92 ISSUED: February 2005 WM-RCM-E Rev D

Waveform Template

0 01101001 00000110001001001101111.
The first bit, 0, makes the sign of the number S, using the formula S = (-1)s = 1.

The next eight bits make the exponent e as follows:

0X1284+1X64+1X32+0X16+1X8+0X4+0X2+1X1=105,from which we
subtract 127, giving -22.

So the factor E is 2127 = 2-22 which is 2.3842E-7.

Finally, we need to make the multiplier F. The remaining bits are given the values 0.5, 0.25, 0.125, 0.0625,
0.03125, etc. The first bits that are not zero are the 6th and 7th bits, whose values are 0.015625 and 0.078125,
respectively. To get a rough value, we will take just these two bits, since the next three are zero, giving
0.0234375. We have to add 1 to this, giving 1.023 as a rough value for F.

The final result is therefore Sx E x F = 1 X 2.3842E-7 X 1.023 = 2.439, which is a little smaller than the
cortrect value because we did not use all the bits to calculate the value of F.

Double precision values are held in eight bytes. If these are arranged in decreasing order of value we get the
following bits:

63,062,61,62..... 3,2,1,0.
We must remember that if the byte order command CORD has been set for low byte first, the bytes as
received in a waveform descriptor will be received in the reverse order. But within a byte, the bits keep their

order: highest at the left, as expected.

From these bits we are to construct three numbers that are to be multiplied together: S x E x T, These in turn
are constructed as follows:

S = (1) E = - 1023 F=1+f

and it is s, e, and f that are calculated directly from the 32 bits. The following diagram illustrates the calculation
of an example.

WM-RCM-E Rev D ISSUED: February 2005 293

APPENDIX II: Waveform Template

FE || DC|| BA || 98 || 76 || 54 || 32 10

11111110 11011100 10111010 10011000 01110110 01010100 00110010 00010000

7543210 FE543210 76543210 76543210 76543210 76543210 76543210 76543210
1111111011011100101110101001100001110110010101000011001000070000

1 11111101101 11001011101010011000011101100707010000110010000710000

L

1 2029 1023 0Q.7956565555555856 +1.0
1% 1006 1.79555555555556
-1.23133006877369E+302 Final decoded result

In a way that does not follow the byte boundaries, the bits are to be segregated as follows:

03 62,61....53,5251,50....2,1,0
sign 11 exponent bits 52 fractional bits
bit 0.5,0.25,0.125 . ..

The sign bit is 1 for a negative number and O for a positive number, so it is easy to construct the sign from this:
S=(-1)"s.

The 11 exponent bits have the following values:
522> 1,53 >2...61 2> 512,62 > 1024

so the resulting number can range from 0 to 2°12 — 1, which is 2047. 1023 is then subtracted from this value,
creating a range from -1023 to +1024. This is then used as a power of two to create a value E.

294 ISSUED: February 2005 WM-RCM-E Rev D

Waveform Template

Then we have to create the multiplying number. The values of the 52 bits are as follows:

51 = 0.5,50 = 0.25,49 = 0.125,48 - 0.0625. . ..
When all the bits are added together, we obtain a positive number f that can be very close to one, differing
from it only by the value of the smallest bit, if all the bits are ones. Generally the value will be much less than
one. Then we add one to the result, obtaining 1 + £ = . The use of the added one extends the dynamic range
of the data.
Alternatively, we can take the 52-bit number at face value, and divide it by 253

Finally we multiply together the sign, the value E, and the value F, to create the final result:

Result =SxExF

WM-RCM-E Rev D ISSUED: February 2005 295

APPENDIX II: Waveform Template

HOW TO CONSTRUCT A FLOATING POINT NUMBER FROM FOUR BYTES

! Routine to construct a floating point number from four bytes.
Function GetFloat (DescPoint as Integer)

! DescPoint is the address of the byte in the waveform descriptor
! where the data begin.
The data are assumed to be in an array called Desc (0 to 350).

! For example, to calculate VERTICAL GAIN, DescPoint = 156.

! Constants needed by GetFloat
Mult2 1/ 128
Mult3 Mult2 / 256
Mult4 = Mult3 / 256

Comm_Order is the variable which provides information
about the order of the bytes in the descriptor and.

in the waveform data. Comm_ Order is the byte at position
34 in the descriptor.

Set ByteOrd 1 when Comm Order = 0 for high byte first.
Set ByteOrd -1 when Comm Order = 1 for low byte first.
Set ByteOrd3 = 3 * Comm Order.

ByteOrd = 1 - 2 * Comm_Order
ByteOrd3 = 3 * Comm_ Order

FByte = ByteOrd3 ' Sign started
FDigit = Desc(DescPoint + FByte)
FSign = (FDigit And 128) \ 128
FSign = 1 - 2 * FSign ' Sign completed

1
FExponent = FDigit And 127 ' Exponent started
FExponent = 2 * FExponent

FByte = ByteOrd3 + ByteOrd
FDigit = Desc(DescPoint + FByte)
FExpBit = FDigit And 128

If FExpBit = 128 Then FExpBit =1

FExponent = FExponent + FExpBit - 127 ' Exponent completed

2 96 ISSUED: February 2005 WM-RCM-E Rev D

Waveform Template

FFraction = CDbl (FDigit And 127) ' Fraction started
FFraction FFraction * Mult2

FByte = ByteOrd3 + 2 * ByteOrd
FDigit = Desc(DescPoint + FByte)
FFraction = FFraction + CDbl (FDigit) * Mult3

FByte = ByteOrd3 + 3 * ByteOrd
FDigit = Desc (DescbPoint + FByte)

FFraction = FFraction + CDbl (FDigit) * Mult4 ' Fraction completed
1

FVariable = 2 * FExponent

GetFloat = FVariable * FSign * (1 + FFraction) ' Conversion
completed

End

! End of GetFloat

WM-RCM-E Rev D ISSUED: February 2005 297

APPENDIX II: Waveform Template

HOW TO CONSTRUCT A FLOATING POINT NUMBER FROM FOUR BYTES

Routine to construct a double precision floating point number from

eight bytes.

Function GetDoubleFloat (DescPoint as Integer)

1

DescPoint is the address of the byte in the waveform descriptor
where the data begin.
The data are assumed to be in an array called Desc (0 to 350).

For example, to calculate HORIZontal OFFSET, DescPoint = 180.

Constants needed by GetDoubleFloat
DMult2 = 1 / 16
DMult3 = DMult2 / 256

Comm_Order is the variable which provides information
about the order of the bytes in the descriptor and.

in the waveform data. Comm_ Order is the byte at position
34 in the descriptor.

Set ByteOrd 1 when Comm Order = 0 for high byte first.
Set ByteOrd -1 when Comm Order = 1 for low byte first.
Set ByteOrd7 = 7 * Comm_ Order.

ByteOrd = 1 - 2 * Comm_Order
ByteOrd7 = 7 * Comm_ Order

DMult3 = DMult2 / 256

FByte = ByteOrd7 ' Sign started
FDigit = Desc (DescPoint + FByte)

FSign = (FDigit And 128) \ 128

FSign = 1 - 2 * FSign ' Sign completed
FExponent = FDigit And 127 ' Exponent started
FExponent = 16 * FExponent

FByte = ByteOrd7 + ByteOrd

FDigit = Desc(DescPoint + FByte)

FExponent = (FExponent + CDbl ((FDigit And 240) \ 16)) - 1023
' Exponent completed

FFraction = CDbl((FDigit And 15)) * DMult2 ' Fraction started

2 9 8 ISSUED: February 2005 WM-RCM-E Rev D

Waveform Template

For I = 2 To

FByte ByteOrd7 + I * ByteOrd

FDigit = Desc (DescPoint + FByte)

FFraction = FFraction + CDbl (FDigit) * DMult3

DMult3 = DMult3 / 256
Next I ' Fraction completed

A

FVariable = 2 FExponent

GetDoubleFloat = FVariable * FSign * (1 + FFraction)

End

! End of GetDoubleFloat

8§88

299

WM-RCM-E Rev D ISSUED: February 2005

