Aktuelle Promotionen

GW Instek
Wir haben jetzt ein Demogerät GDS-207 für Sie zum Test und zur Evaluation. Alle GDS-200 und GDS-300 Handheld Oszilloskope können wir Ihnen ab sofort 30% günstiger anbieten. Das GDS-207 mit 70 MHz Bandbreitei und 1 GS/s bei 1 MS Speicher erhalten Sie schon ab Sfr. 895.- . Zögern Sie nicht ein Angebot anzufordern.
Teledyne LeCroy
Spectrum Analyzer zu HDO4000 Oszilloskop - Diese Software Option kommt zu jedem HDO4000 kostenlos hinzu.Möchten Sie die Vorzüge von 12-bit Oszilloskopen mit dieser Sepctrum-Software testen?
Teledyne LeCroy

WaveSurfer 3000 Oszilloskop Promotionen

- EMB - Dekodieren und Triggern der Bus-Signale I2C, SPI, UART und RS232
- AUTO - Dekodieren und Triggern der Bus-Signale CAN und LIN
- FG - 1-Kanal Funktions- und Arbiträrgenerator

Testen Sie mich! Fordern Sie eine Gratis-Demo an.

 
 
GW Instek
Wir haben jetzt ein Demogerät GDS-207 für Sie zum Test und zur Evaluation. Alle GDS-200 und GDS-300 Handheld Oszilloskope können wir Ihnen ab sofort 30% günstiger anbieten. Das GDS-207 mit 70 MHz Bandbreitei und 1 GS/s bei 1 MS Speicher erhalten Sie schon ab Sfr. 895.- . Zögern Sie nicht ein Angebot anzufordern.
1
Teledyne LeCroy
Spectrum Analyzer zu HDO4000 Oszilloskop - Diese Software Option kommt zu jedem HDO4000 kostenlos hinzu.Möchten Sie die Vorzüge von 12-bit Oszilloskopen mit dieser Sepctrum-Software testen?
2
Teledyne LeCroy

WaveSurfer 3000 Oszilloskop Promotionen

- EMB - Dekodieren und Triggern der Bus-Signale I2C, SPI, UART und RS232
- AUTO - Dekodieren und Triggern der Bus-Signale CAN und LIN
- FG - 1-Kanal Funktions- und Arbiträrgenerator

Testen Sie mich! Fordern Sie eine Gratis-Demo an.

3

Follow The Bouncing Signal (E)

Introduction

Signal jamming, noise generation/interference, signal interception, and other malicious RF-related activities have long been part and parcel of the electronic warfare arena. One countermeasure that is widely deployed is frequency hopping spread-spectrum (FHSS) transmission, or rapid and pseudo-random jumps of the carrier frequency in an effort to confound would-be jammers. FHSS transmission poses test and measurement challenges that we'll outline below.

Figure 1 - Trend Plotting is a handy tool for discerning frequency-hpping patterns. 
Figure 1 - Trend Plotting is a handy tool for discerning frequency-hpping patterns.

In a scenario in which you're trying to follow a signal as it ducks and weaves from carrier frequency to carrier frequency, your best friend may be your oscilloscope's Trend plotting capabilities (see this earlier post for information on how Trend plots can help with power measurements). Figure 1 shows the fast-Fourier transform (FFT) of a frequency-hopping input signal (F6 in red). Below that is a Trend plot of that FFT's peak frequency as a function of time. A look at the plot tells us that the carrier frequency of our signal peaks, then gradually decreases until it makes an instantaneous step change back to the high frequency. Thus, we gain a history of where the frequency goes on a frequency vs. time axis. Any frequency this signal moves to is recorded in the trend plot, which itself constitutes a waveform on which you can take measurements and perform additional analysis.

Another interesting example of a frequency-hopping signal appears in Figure 2. Again, we can determine the pattern by taking a trend plot of an FFT of the input signal. In this case, the frequency traverses a linear sweep and suddenly breaks into a very different pattern with numerous step changes.

Figure 2 - Trend plots reveal complex FHSS patterns with ease. 
Figure 2 - Trend plots reveal complex FHSS patterns with ease.

To delve even further into the characteristics of an FHSS signal, we can augment the trend plot with histograms. The histogram can tell us the dwell time of the frequency peak at its various stops. In Figure 3, we can see that it spends a disproportionate amount of time at one frequency. We can determine what percentage of the time it spends at this frequency versus the other values, or we can determine the value for each of the frequencies either as a percentage or a ratio.

Figure 3 - Adding histograms reveals more information about an FHSS signal. 
Figure 3 - Adding histograms reveals more information about an FHSS signal.

For a final example of the breadth of information that can be gleaned from an RF burst, Figure 4 shows a capture of an RF burst (C1 in yellow) with an FFT below it (F6 in red). The parameter x@max, which uses the FFT as its source, shows where the frequency peak is at all times. At bottom left is the plot of pulse amplitude vs. time (F8 in green), while the plot of frequency peak vs. time appears at center right (F7 in blue). At top right is a histogram that gives us the number of occurrences for specific frequencies. The teal trace at lower right simply shows that the oscilloscope is set to trigger on the marker pulse.

Figure 4 - An example of how trend plots and histograms dig deep into the properties of an FHSS signal. 
Figure 4 - An example of how trend plots and histograms dig deep into the properties of an FHSS signal.

Conclusion

Armed with a sufficiently powerful oscilloscope, one can discover many interesting facets of an FHSS signal.

Das ist eine Applikations-Schrift von Teledyne LeCroy.